When does softwar e affect the health, safety and welfare of the public?
Phil Laplante
Penn State
January 2012

Abstract

Licensure of certain software engineers in the ebhiStates will be required in at least 10 state2®i/3
and, likely, by all US states and jurisdictiongg(ePuerto Rico) within a few years. The purpose of
licensure is to ensure that those who offer softwaargineering services to the public are minimally
competent. But which software engineers will nedaktlicensed? What kinds of kinds of software
systems affect the health, safety and welfareeoptitlic? The answers to these two questions afredo
matter of law and of science. This paper addrefzescientific aspects of these two questions fham
perspective of reliability engineering.

I ntroduction

States require licensure of certain civil, elealistructural, and other engineers to ensureatmat
practitioner is at least minimally competent. Thent of licensure is to protect the public frorjuiious
consequences of incompetent “engineers.” Genesptaking, licensure is required if the engineer is
involved in building a system whose failure coutdise harm and is offering his services directiheo
public (e.g. as a limited liability corporation)danot through a corporation, or government entitlyich
would assume the responsibility for the engineadsk

Currently, only Texas requires licensure for thaseking on systems that affect the “health, welfaire
safety” of the public [1]. But by 2013, the statdAlabama, Delaware, Florida, Michigan, Missouri,
New Mexico, New York, North Carolina, Texas andgitiia will require licensure for certain software
engineers and more states will follow suit [2]elibve that all U.S. states and jurisdictions adbpt
some form of professional licensure for softwargieeers. | feel confident in this prediction be@us
economic forces will make it so. When a softwamedpict fails in a way that causes injury, and that
software was produced in a state that does notresligensure, plaintiffs’ lawyers will ask “why dithe
state not do its duty to protect the public, adase in other states?” And then the legislaturdnefstate
in question will act to require licensure.

Some philosophers worry that Software Engineeriag mever be regarded as true engineering [3]. Only
a few years ago |, too, doubted that the scienaEla@mme together to lead to a truly foundational
software engineering discipline [4]. After | reBénnis Frailey’s article [5], however, | become
convinced that moving towards licensure was an majpb step towards establishing the foundational
science needed. But whether philosophers considisvese engineering as engineering or not is
irrelevant to the issue of licensure. After afitss license all kind of non-engineering occupetisuch

as barbers, plumbers, and tattoo artists in oalprdtect the public.

Licensure is generally obtained by earning an gpjate engineering degree, having several years of
relevant experience, and passing two comprehepsams — one a general test of engineering prirgiple

and the other a test of the principles and pragtidesoftware engineering. It is beyond the scdpbe
article to discuss the nature of these exams Hmutriformation will be made available to those wtish

to take the examination through the National CdwfdExaminers of Engineers and Surveyors, the non-
profit organization that is responsible for adnti@isg the licensure exams.

The laws setting forth guidelines for licensuresoftware engineers have yet to be written for rstes.
Hence, no one knows for sure which professiondlsneed to be licensed and which will not. However,
it is known that state laws tend to require liceagfor those offering services directly to the paith
matter that | have already discussed) and who worthose systems that can affect health, safety and
welfare. Let's examine some hypothetical exampfahekinds of systems that could fall into this
category.

What kinds of systemswould affect the health, safety and welfar e of the public?

Table 1 provides a sampling of systems that | thinkld require a licensed professional enginetiraf
system was being offered directly to the publichwaitt the protection of an industrial exemption.

Application Domain Individual More than one person
Commerce vending machine e-commerce site
Entertainment tattoo machine roller coaster

Financial tax preparation software pension fund management
Medical implantable insulin pump telemetry monitoring
Transportation motorcycle automobile

Utility tanning bed water treatment plant

Table 1: Some sample systems that affect the health, safety and welfare of the public.

| am not suggesting that Table 1 represents a ampsive taxonomy of “licensable systems.” Rather,
the table represents a starting point for futusewssions. Let’'s discuss each of these systentflybrie

Vending machineConsider a software controlled vending machir tlakes refrigerated pizza slices on
demand (these systems are popular in Europe). Hneneotential dangers in the functioning of the
baking oven (potential for explosion or electroonjias well as the potential for contaminatiorné t
refrigeration system fails. Such a system diffeay; from a simple electromechanical candy vending
machine, even if it is under some kind of softwewatrol (e.g. for computing change to be madejad,
there is a potential for the change making softwarfail somehow, short changing the customer for
example. But this eventuality does not pose sigaifi financial harm, and therefore, would be exempt
from a licensure provision.

Tatoo machinelt was mentioned that tattoo artists must benbeel in most states. But what about a
software-controlled tattoo machine? Clearly sitmerhachine is invasive (i.e. it sticks needles in a
human) it would fall under the licensure provislmtause a gross malfunction could cause serioliybod
harm. But what would be the liability to the enginéesigning the machine if the a software failure
causes it to erroneously tattoo “Jean,” the naftiEred’s” ex-wife on his arm, instead of his curte

girlfriend, “Joan,” causing Joan to go into a ragel kill Fred? The answer is unclear, | think, andll
discuss the interactions of systems subsequently.

Tax preparation softwareA malfunction in this software could cost sigoét financial loss to a
taxpayer or taxpayers, even expose them to crirpireecution and loss of liberty.

Implantable insulin pumgClearly, a software malfunction in such a deviceld@ause significant
harm, even death. | do not know how FDA regulatiosild impose further constraints on the
engineering of the system.

Motorcycle The software controlling the cruise control sgstould fail somehow, causing the vehicle to
crash. Clearly, there is the potential for harma ttuman rider and nearby pedestrians. The sanadisitu
could occur for an automobile.

Tanning bedIf software controls the tanning lights and ipalale of accidentally locking the bed closed
and trapping an occupant, then significant harniccasult.

e-commerce sitdf poor software engineering practices lead tmligguate security provisions then
customer account data, including credit card nusbed other identifying information, could be
compromised.

Roller coasterTerrible things could happen if some sort ofwafie malfunction in the control system
causes the car to achieve excessive speeds aoff tha rails.

Pension fund manageme#gain, imagine that poor software security prams allow an intruder
to wipe out the retirement funds of thousands ofqes.

Telemetry monitoringErrors in processing, triaging, or displayingnsity carrying vital signs of patients
could lead to treatment errors and injury or death.

Water treatment plantnadequate security provisions (famously, vulbditees in the SCADA control
software) could lead to an attack on the systerncinald make the system unsafe (e.g. inadequate
purification) and present significant health hasadthe public.

Instead of trying to categorize every type of systhat could affect the health, safety and weltdréne
public, it is simpler to create a set of questitireg can be used to determine if a software syserhave
an adverse effect on the public. Fortunately, susht of questions exists — the Laplante-Thorntibaria
[2]. These are:

1. Does the software control a device or devicesdabald directly inflict harm to a human being if
there was a malfunction?

2. Does the software put the assets of an individuabgporate entity at risk beyond the normal
amount of risk assumed in everyday business trinea@

3. Does the software expose identifying informatiormofindividual or a corporate entity that would
violate any federal, state or local laws (e.g. HSPPERPA)?

4. Does the software interact with other systems iy that directly satisfies 1-3 above?

| contend that if the answer to any of these qaastis “yes” then the software system, or the parthe
system would likely have to be created under teparsible charge of a licensed professional soffwar
engineer [2]. For example, the vending machinéydamnachine, insulin pump, motorcycle, automobile,
tanning bed, roller coaster, telemetry monitor, aatier treatment plant all would answer affirmajve
question 1. The tax preparation software, e-comengite, and pension fund management system would
answer affirmatively to question 2. The tax prefiarasoftware and pension fund management and
possibly the e-commerce systems might also ansffienatively to question 3, if adequate precautions
to protect personal information were not taken.

Systemsinteractions

What about question number 4, that is, a chaintefactions starting with a seemingly innocuousie

of software but eventually causing the catastrofdilare of some system that can harm the publio? D
we need to consider all software and the interastlietween software components within a system and
between systems in order to have some sort ofitiignslosure of safety? For example, if a security
breach to a “non-critical” system linked to a @di one causes a public disaster, should it beleded

that the ‘non-critical” system was really “critical’ he answer to this question, and others likarig,
unclear and likely will need to be resolved in art®f law on a case by case or class basis [2]itBx
worthwhile to try to offer some guidance in thigaed.

Consider a system of systems. S, S, n>2. Suppose that each & i <n-linteracts with § and %, but
that only S interacts directly with humans (Figure 1). Sumgpd®owever, that through a sequence of
systems interactions a software failure jrc&uses a cascade of failures tovhich causes injury to
some human interacting with.SVhat is the responsibility of the designers pfdhe injured parties?

Figurel A system of systems. Only system S, interacts with humans.

While this question could only be answered by g jand on a case by case basis, | contend that the
responsibility to the engineer should be reduced fasiction of the distance of interaction. Forrapée,
while the engineer working on systemsBould be 100% responsible for the consequencagailiure in
S, that harms the public, the engineer for systemwd@uld bear some responsibility, let's say one,Half
a failure in S if said failure could be shown to be due to atfauk,. Hence, the responsibility for the

engineer of system,Sfinancial or otherwise, would be limited to 14# the total liability. Of course, the
situation get more complicated based on the seguanghich the systems are developed, whether
interactions where envisioned previously, wheth@ndards based design is used and so on. And the
simple model above only considers sequential intenas — what about a web of interactions? Clearly
each case has to be considered separately.

Another question | am frequently asked is “whatudlsmftware components that are produced in other
countries, or in open source communities, or itestavhere licensure is not required? How does dicen
apply in these situations? In this respect, softveargineering is no different than other enginggrin
disciplines in using other third-party furnishedmmonents. For example, when licensed civil engmeer
use steel produced in another country to builddgerin the US, they are certifying that the steauited
for the job. In other words the engineer takesaasibility, and puts his license and even freedonthe
line, to insure that these external componentsaieto use. The same principles hold in othen$ied
professions, for example, to nurses who must rafuselminister medications ordered by a doctdnef t
nurse believes the medication would be harmfuhéopatient.

Conclusions

The issue of licensure evokes strong feelings Boftware practitioners who do not believe that
licensure should be required. But are these sadidduoials willing to risk a great deal on a softear
engineering decision? That is what a licensed pedd@al must do — stake their reputations, treasure
livelihood, and even their freedom on the decisitvey make. This level of risk tends to raise the
standards of decision making, which is precisedyitttent of licensure laws.

Of course, just as licensing does not prevent dsdtom killing patience through malpractice, liserg
software engineers will not prevent software erfoyen occurring, nor from preventing software based
systems from harming the public. However, licengloes raise the standard of practice and provide
assurance to the public of minimal competency erptrt of practitioners.

It is not known how many software professionald méled to be licensed because the answer depends on
how state legislatures choose to define systematffet “health, safety and welfare.” Each statié w
probably define these terms differently. But thisrengoing work in developing a “model law” for &8s

to use [2].

References

[1] Texas State Law, § 1001.407, Construction at&@e Public Works, August 11, 2007, available at
http://law.onecle.com/texas/occupations/1001.407.00.html

[2] P. Laplante and M. Thornton, “When do Softw8sestems Need to be Engineeretigday’s Engineer
July 2011, available dittp://www.todaysengineer.org/2011/Jul/licensung.as

[3 Michael Davis. 2011. Will software engineeringeebe engineering€ommunications of the ACBH,
11 (November 2011), 32-34.

[4] Phillip A. Laplante, “Professional Licensingdithe Social Transformation of Software Engineers,”
Technology and SocietQummer 2005, pp. 40-45.

[5] Dennis Frailey, “Viewpoint: Licensing SoftwaEngineers,'Communications of the ACMol. 42, no.
12, pp. 29-30, 1999.

